微波通信,英文是Microwave Communication,是指使用微波(Microwave)作为载波,携带信息,进行中继通信的方式。
微波天线GHz),也就是说,波长范围是1米~0.1毫米(光速=波长×频率)。
事实上,微波通信并没用微波的全部频率。它主要使用3GHz-40Ghz这个范围。
工程师们将部分微波波段进行了定义,并且单独命名,例如我们大家常常听说的Ka波段、Ku波段、C波段等。
早在1931年,从英国多佛尔到法国加莱,就建立了世界上第一条超短波通信线路,横跨了英吉利海峡。
1947年,著名的美国贝尔实验室在纽约和波士顿之间,建立了世界上第一条模拟微波通信线年代末,澳大利亚、英国、加拿大、法国、意大利和日本等国家,都在本国的主干路由上安装了微波接力通信系统。
我国的微波通信研究启动比较晚,开始于60年代。与此同时,模拟微波逐渐被淘汰,人类逐渐进入了数字微波通信时代。
数字微波通信,又分为PDH(准同步)和SDH(同步)两个阶段。相信之前看过小枣君传输网科普文章的同学,一定不会感觉陌生。
80年代后期至本世纪初,SDH在传输系统中占据统治地位,微波通信技术发展非常迅速。
如今,虽然以光纤通信为主的有线传输网络占据主导,但是某些特殊应用场景下,我们仍就离不开微波通信方式。
例如偏远地区,布设有线传输难度太大或成本过高,就会采用微波进行数据回传。
对于有些专网通信用户,例如电网、铁路等,也会较多采用微波通信作为远距离孤立站点的数据传输手段。
总而言之,相比于光纤通信来说,微波仍然具有很多无法替代的优势,所以会长期在一线服役。
需要注意的是,我们一般说有三大传输系统:光纤通信、微波通信、卫星通信。实际上,卫星通信也是微波通信的一种,只是比较特别而已,待会我们会详细说到。
电磁波通信,通常能分为广播方式和点对点方式。我们的微波通信,属于后者。
这种类型的电磁波,绕射能力很差,穿透力很差,在地表传输时,衰减很大,传输距离短。
我们知道,电磁波除了在地面沿空气传播之外,还可通过天空中电离层反射的方式来进行远距离传播。
但微波仍旧没办法利用这样的形式。还是因为微波的频率太高,以至于电离层无法有效反射(只能穿透)。
什么是视距传输?就是发送天线和接收天线之间没有障碍物阻挡,可以相互“看见”的传输。
视距传输,除了容易受山体或建筑物等影响之外,还会受到地球表面弧度的限制。
地球是一个球体,地球的表面是有弧度的。微波天线发出的微波,经过一定距离之后,就会被地球表面所阻挡,无法继续传播。
因此,微波通信存在距离限制。通常来说,如果微波天线挂在正常高度的铁塔上,它的传输距离就是50公里。
如果要进行远距离传输,就一定要进行“接力”,也就是说,需要设置微波中继转接站。
微波中继转接站接收到前一站的微波信号,加以放大等处理,再转发到下一站去,就像接力赛跑一样,直到抵达最终收信端。
也正是因为这个传输特点,微波通信经常被称为微波中继通信,或微波接力通信。
那么,你一定想到了,为什么我们不干脆把中继站挂到天上去呢?是的,这就是卫星通信。
借助地球同步卫星,将“微波中继站”挂在太空中,可是最大化地扩大微波通信的距离。
地球同步卫星距离地面36000公里,可以覆盖地球表面积的三分之一,理论上来说,只需要3颗卫星,就能保证地球上任意两个中继站进行通信。
中频是指发射机将信号载波变换成发射频率,或者将接收频率变换成基带的一个中间频率,一般由系统架构决定。
IDU负责完成业务接入、复分接和调制解调,在室内将业务信号转换成中频模拟信号。
天线就不用说了,将射频信号转换成电磁波,向空中进行辐射。或者接收电磁波,转换成射频信号,送给ODU。
微波天线除了大家看到的这种“大鼓”一样的,还有抛物面天线和卡塞格伦天线。
一种是ODU和天线分开的分离式安装,还有一种是ODU和天线扣在一起的直扣式安装。
当存在两个ODU时(用于1+1 HSB热备份,或者1+1 FD频分),还会有一个合路器,用于功率分配或合成。
1+1 HSB热备份(一个主用,一个备用,以防ODU故障造成业务中断):
可以看到,上图中,有两种方式的天线。一种是直接挂在铁塔上,还有一种是借助了无源反射板,将信号进行了一个反射。
中继站和枢纽站,都会涉及到信号转发(中继)。中继的方式,分为无源和有源。无源除了刚才我们图里看到的无源反射板之外,还有背靠背天线。
所谓的“有源”,就是有能量源、电源,也就是说,通过外部能源进行了加强。虽然效果会更好,但是成本更高,而且故障点更多。
广告声明:文内含有的对外跳转链接(包括不限于超链接、二维码、口令等形式),用于传递更加多信息,节省甄选时间,结果仅供参考,IT之家所有文章均包含本声明。